Application of Transient Response Techniques for Quantitative Determination of Adsorbed Carbon Monoxide and Carbon Present on the Surface of a Ruthenium Catalyst during Fischer-Tropsch Synthesis

PHILIP WINSLOW AND ALEXIS T. BELL

Materials and Molecular Research Division, Lawrence Berkeley Laboratory and Department of Chemical Engineering, University of California, Berkeley, California 94720

Received June 25, 1983; revised September 13, 1983

Transient response experiments using isotopic tracers have been carried out to determine quantitatively the coverages of adsorbed CO and carbon on a Ru/SiO2 catalyst during Fischer-Tropsch synthesis. In situ infrared spectra reveal that the Ru surface is virtually saturated by chemisorbed CO. The rate of exchange of adsorbed and gas-phase CO is very rapid compared to the steady-state rate of CO hydrogenation. The integrated absorption coefficient for adsorbed CO is found to decrease from 9.0×10^7 to 4.5×10^7 cm/mol as θ_{CO} increases from 0 to 1.0. Two forms of carbon, C_{α} and C_{θ} , are also present on the catalyst surface under normal reaction conditions, neither of which is associated with oxygen or hydrogen. C_{α} is much more reactive than C_{β} . The surface coverage of C_{α} rapidly comes to a steady-state value and the steady-state rate of methane formation is found to be a linear function of the C_{α} coverage. The coverage of C_{β} is considerably larger than that of C_{α} and continues to grow over a period of up to 5 min under reaction conditions. C_{β} is formed from C_{α} in the presence of adsorbed hydrogen and can be converted back to Ca. It is concluded that at least a part of the C_B deposited resides on the support and that the rest is present on the surface of Ru, and may be responsible for the gradual loss of methanation activity with time. The dependencies of the coverages of C_{α} and C_{β} on the partial pressures of the reactants have been determined and are found to be quite different from one another.

INTRODUCTION

Transient response studies, and in particular those involving isotopic tracers, can provide a considerable amount of information regarding the mechanism of Fischer-Tropsch synthesis of hydrocarbons over Group VIII metals. Working with a fused iron catalyst, Bennett and co-workers (1, 2) have observed that upon changing from a flow of CO and H₂ to a flow of H₂ alone, a surface intermediate formed during steadystate synthesis undergoes rapid hydrogenation to produce methane and higher hydrocarbons. The reactivity of this intermediate gradually diminishes when it is annealed in helium, and XPS observations indicate that the intermediate is converted to graphitic carbon. It was also noted that a freshly reduced iron catalyst is progressively carbu-

rized under synthesis conditions. Based on this evidence, it was concluded that adsorbed CO rapidly dissociates to form atomic carbon which then acts as a precursor to the synthesis of hydrocarbons, as well as carburization of the catalyst. Using similar experimental techniques, Ekerdt and Bell (3) have established that large amounts of carbon are laid down during synthesis over a Ru/SiO₂ catalyst. Here too, it was observed that the carbonaceous deposit could be hydrogenated at a rate considerably in excess of steady-state synthesis rates. Integration of the amounts of methane and C₂⁺ hydrocarbons formed during the transient indicated that the carbon reservoir is equivalent to several monolayers of the exposed Ru. Since in situ infrared spectra of adsorbed CO showed no attenuation of the CO band intensity during the

time that the catalyst was under synthesis conditions, it was proposed that the deposited carbon must be located on the support or exist as fine carbon whiskers attached to the surface of the metal

The participation of atomic carbon in the formation of methane and higher molecular weight hydrocarbon over Ni, Co, and Ru catalysts has been demonstrated very effectively by Biloen et al (4) using transient isotopic tracer techniques. In these experiments, the catalyst surface was partially covered by ¹³C-labeled carbon produced by disproportionating ¹³C¹⁶O The undissociated ¹³C¹⁶O was then displaced by ¹²C¹⁶O and the catalyst was exposed to a mixture of ¹²C¹⁶O and H₂ These experiments showed that the ¹³C-labeled carbon is readily incorporated into the hydrocarbon products and that the dissociation of ¹²C¹⁶O is a rapid process By using 12C18O to displace the ¹³C¹⁶O adsorbed during the Boudouard reaction, Biloen et al (4) were able to establish that the displacement process is not accompanied by extensive isotopic scrambling, which suggests that CO dissociation is undirectional

Cant and Bell (5) combined transient response isotopic tracing with in situ infrared spectroscopy to investigate the dynamics of several elementary processes occurring during CO hydrogenation over a Ru/SiO₂ catalyst Chemisorbed CO was found to exchange very rapidly with gas-phase CO, and under reaction conditions, the two species were established to be in equilibrium A similar conclusion was reached concerning the relationship between gas phase and adsorbed H₂ The dissociation of molecularly adsorbed CO was found to require vacant surface sites While isotopic scrambling between ¹³C¹⁶O and ¹²C¹⁸O was observed, the rate of this reaction was found to be small compared to the conversion of CO to methane Two interpretations were given for this observation The first is that CO dissociation is nearly irreversible. The second is that dissociation is in fact reversible, but isotopic scrambling is impeded by the low mobility of adsorbed carbon and oxygen atoms Experiments similar to those described by Cant and Bell (5) have also been reported by Tamaru and co-workers (6, 7) These authors concluded that all hydrocarbon species are formed from surface carbon produced by dissociative adsorption of CO Additional carbon was found to be accumulated in the form of hydrocarbon chains. It was proposed that these species can resupply the catalyst surface with single carbon atom species by scission of the carbon-carbon bonds in the chains

Biloen et al (8) have recently performed additional transient response experiments with Ni, Co, and Ru catalysts The results of these studies led them to conclude that only a small fraction of the total carbon overlayer belongs to the reaction intermediates, but that these species are linked to the total carbon reservoir in a reversible fashion A similar picture has been proposed by Happel et al (9-11) to explain the course of transient responses observed with Ni catalysts From a simulation of the observed transients, these authors deduced that the most abundant reacting intermediate is adsorbed CH, and that the carbidic carbon consists of a relatively small pool of active carbon which exchanges with a larger pool of mactive carbon

The studies presented here represent an extension of the work reported by Cant and Bell (5) and were aimed at obtaining quantitative measurements of the different forms of carbon present on the surface of a silica-supported Ru catalyst. A further objective was to identify the active form of carbon directly involved in the synthesis of methane and higher molecular weight products. The influence of reaction conditions on the surface coverages of adsorbed CO and carbon were also examined. These investigations were carried out using transient isotopic tracing in combination with Fourier-transform infrared spectroscopy

EXPERIMENTAL

The experimental apparatus used for

these studies is similar to that described by Cant and Bell (5) The central component is a low dead-volume reactor that doubles as an infrared cell (12) The catalyst, in the form of a 20-mm-diameter pressed disk is held in an aluminum holder between two CaF_2 windows The path length through the gas in the cell is 2 5 mm, and the residence time of the gas in the cell is of the order of 0 25 s. The cell is heated by external flat-plate heaters. The temperature of the catalyst is measured by a thermocouple, the tip of which is inserted into the catalyst disk holder.

Gas for the reactor is supplied from a manifold made up of two branches. Up to four separate gases can be delivered to each branch by electronic flow controllers (Precision Flow Devices Model PFD-112). The two branches are connected to a low dead-volume 4-way valve that is used to select the feed stream delivered to the reactor. Since the pressure drop in each of the branches is negligible, switching from one stream to the other is accomplished without generation of a pressure surge or changes in gas flow rate. Operation of the valve is achieved through a motor-driven valve actuator (Valco 4200)

A portion of the product stream is sampled through a differentially pumped inlet system into a vacuum chamber containing the quadrupole structure and detector of an EAI 250B mass spectrometer (13) Selection of the mass spectrometer settings and data acquisition are accomplished using a Commodore PET microcomputer (Model 8032) This system is also used to control the valve actuator and to carry out data analysis after an experiment Under normal operation, the intensities of five separate masses are scanned every 0 33 s and stored on a floppy disk Upon completion of an experiment, the stored data can be displayed on the visible memory of the microcomputer and then plotted on an x-y re-

Infrared spectra are collected using a Digilab FTS-10M Fourier-transform infrared spectrometer equipped with a narrow-band HgCdTe detector. The spectrometer is operated by a Nova 2 computer interfaced to a Data General 6050 5M byte hard disk. Using a Real-Time Disk Operating Systems (RDOS), 8-cm⁻¹-resolution spectra were collected in the form of interferograms at the rate of about one per second. For archival storage, the spectral data were transferred to magnetic tape. An optoelectronic link between the NOVA 2 and the PET was used to synchronize data acquisition by the two computers.

A 4 3% Ru/SiO₂ catalyst was prepared by incipient wetness impregnation of Cab-O-Sil HS-5 with an aqueous solution of RuCl₃ $3H_2O$ The catalyst was dried and reduced in flowing H_2 , for 2 h at 673 K. The catalyst was then sieved, and 51 mg of the -30, +60 mesh fraction was pressed into a self-supporting disk. The dispersion of the catalyst sample was determined to be 0 27, by means of H_2 chemisorption at 373 K.

Hydrogen, deuterium, and helium were purified by passage through Oxy-Absorbent (Alltech Associates No 4005) and molecular sieve (Linde 13×) cooled in liquid nitrogen Mass spectrometric analysis of the deuterium indicated a 2 3% content of HD Carbon monoxide was purified of iron carbonyls by passage through a copper tube packed glass beads and heated to 473 K Further purification was accomplished by passage through Ascarite II and molecular sieve cooled in dry ice. Isotopically labeled CO was obtained from Liquid Carbonic and used without further purification Mass spectrometric analysis showed that the $^{13}C^{16}O$ contained 3 6% $^{12}C^{16}O$, 0 8% $^{12}C^{18}O$, and 11 8% ¹³C¹⁸O, and that the ¹²C¹⁸O contained 0 9% 12C16O and 0 9% 13C18O

RESULTS

Steady-State Kinetics

The steady-state kinetics of methane synthesis were determined using $^{13}C^{16}O$ and D_2 as the reactants. The choice of reactants was dictated by the fact that both $^{13}C^{16}O$

and D₂ were used in the isotopic tracer experiments aimed at determining the surface coverages of adsorbed CO and carbon By using D₂, rather than H₂, it was also possible to determine the production of ¹³C-labeled methane by monitoring mass 21, without interference from the fragmentation patterns for water and other methane isotopes Rate measurements were made for temperatures between 443 and 513 K, CO partial pressures between 59 and 195 Torr, and D₂ partial pressures between 88 and 588 Torr Prior to each measurement the catalyst was reduced in flowing D₂ for 24 h at 463 K

For the sake of consistency, the rate data used to establish the kinetics of ¹³CD₄ synthesis were all collected after 300 s of reaction. These data are well represented by the expression

$$N_{\rm C_1} = 4.2 \times 10^8 \frac{P_{\rm D_2}^{1.23}}{P_{\rm CO}^{0.86}}$$

 $\exp(-25,300/RT)$ (1)

where $N_{\rm C_1}$ is the turnover frequency for $^{13}{\rm CD_4}$ formation in s $^{-1}$, $P_{\rm D_2}$ is the partial pressure of D₂ in atm, $P_{\rm CO}$ is the partial pressure of $^{13}{\rm C^{16}O}$ in atm, and T is the temperature in Kelvin degrees. Both the activation energy and the exponents on the partial pressures of D₂ and CO are in good agreement with previous determinations of the kinetics of methane synthesis over silica-and alumina-supported Ru (3, 6, 14–17)

In addition to methane, small amounts of ethane and ethylene were observed. The rates of formation of these products were usually about 10% of the rate of methane formation. Since accurate measurements of the rates of the C_2 species were difficult to make, the kinetics of their formation were not determined

Chemisorbed CO

Infrared spectra of the catalyst taken under reaction conditions exhibited a single band attributable to linearly adsorbed CO At 463 K, neither the position nor the inte-

grated absorbance of this band changed as the partial pressure of CO was varied between 60 and 200 Torr, and the partial pressure of D₂ was varied between 0 and 580 Torr The position of the band did depend, though, on the isotopic composition of the CO The band was observed at 2040 cm⁻¹ for ¹²Cl⁶O, at 1995 cm⁻¹ for ¹²Cl⁸O, and at 1990 cm⁻¹ for ¹³Cl⁶O Between 433 and 493 K, the CO band was unaffected by the catalyst temperature When the temperature was raised to 513 K, the integrated-band intensity decreased, but only by about 4%

Two independent methods were used to correlate the integrated band intensity with the coverage of adsorbed CO The first involved saturation of the catalyst surface with ¹²C¹⁶O followed by a gradual reduction of the adsorbate with D₂ At 463 K, the time constant for CO reduction was approximately 4 min, which is considerably longer than the time constant for diffusion through the catalyst disk,

1 s This assures that during the reduction a uniform partial coverage is maintained throughout the disk By measuring the amount of 12C16O removed as ¹²CD₄ and a knowledge of the total amount of adsorbed ¹²C¹⁶O present at the start of the experiment, it is possible to determine the amount of ¹²C¹⁶O remaining on the catalyst surface at any time. This quantity can then be correlated with the integrated absorbance of the CO band

The second method involved a direct determination of the coverage by adsorbed CO The catalyst was first saturated with ¹²C¹⁸O A partial coverage was then achieved by reducing a portion of the adsorbate in a manner identical to that described above The reactor was then flushed with argon for 60 s and the spectrum of the remaining adsorbate was recorded Next, a flow of 5% ¹³C¹⁶O was introduced into the reactor This caused the adsorbed ¹²C¹⁸O to be rapidly displaced by ¹³C¹⁶O and produced a well-defined transient of ¹²C¹⁸O in the gas phase The integral of this transient is equivalent to the quantity of originally adsorbed ¹²C¹⁸O Experi-

Fig. 1 Effect of the concentration of adsorbed CO on ν_{CO} The arrow indicates the concentration corresponding to CO/Ru_s = 1 0

ments, similar to those just described, were also carried out in which the catalyst was first contacted with ¹³C¹⁶O and the adsorbed ¹³C¹⁶O then displaced with ¹²C¹⁸O No evidence was found during this experiment for the formation of ¹³C¹⁸O or ¹²C¹⁶O

Figures 1 and 2 illustrates the effects of CO surface coverage on the vibrational fre-

quency, integrated absorbance, and the integrated absorption coefficient. The data given in Fig 1 show that the vibrational frequency, v_{CO} , decreases progressively with decreasing surface coverage This trend has been observed in many infrared studies of adsorbed CO and is ascribable to a decrease in dipolar coupling (18) The dependence of the integrated absorbance on adsorbate coverage, seen in Fig 2A, is identical for all three forms of CO and is independent of the method used to determine the surface coverage At low coverages, the integrated absorbance increases linearly with coverage, but at higher coverages the integrated absorbance increases more slowly The integrated absorption coefficient, \bar{A}_{CO} , was determined from the expression

$$\bar{A}_{\rm CO} = \frac{1}{\bar{C}_{\rm CO}} \int_{1500}^{2100} A(\nu) d\nu$$

As can be seen in Fig 2B, \bar{A}_{CO} decreases with increasing surface coverage. The magnitude of \bar{A}_{CO} for CO adsorbed on Ru/SiO₂ is similar to that reported previously for CO adsorbed on Pt/SiO₂ (18–23), as indicated by the data given in Table 1. It is also of interest to note that the decline in \bar{A}_{CO} with increasing CO coverage is similar in extent

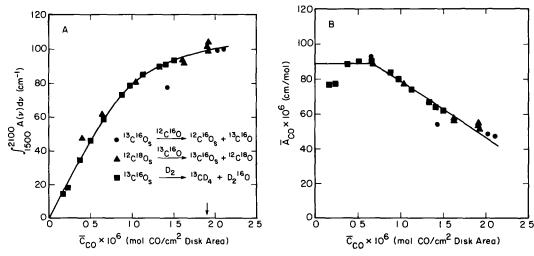


Fig 2 Effect of the concentration of adsorbed CO on (a) the integrated absorbance of the CO band and (b) the integrated absorption coefficient. The arrow indicates the concentration corresponding to $CO/Ru_s = 1.0$

TABLE 1
Comparison of Integrated Absorption Coefficients
for CO Adsorbed on Ru and Pt

Source	Catalyst	$ ilde{A}_{\rm CO} imes 10^{-6}$ (cm/mol)
This work	Ru/SıO ₂	90-45a
Heyne and Tompkins (19)	Pt/S ₁ O ₂	$55-30^{a}$
Eischens (20)	Pt/S ₁ O ₂	$73-40^{a}$
Seanor and Amberg (21)	Pt/S ₁ O ₂	$37,29^{b}$
Cant and Donaldson (22)	Pt/S1O ₂	43,51 ^b

 $[^]a$ The range in $\bar{A}_{\rm CO}$ values reflects the change observed with increasing CO coverage

to that reported for silica-supported Pt (18–23) and for Ru(001), Pt(111), and Pt(100) surfaces (24–26)

Chemisorbed Carbon

The following procedure was used to determine the quantity of carbon present on the catalyst surface The catalyst was first reduced at 463 K and then exposed to a ¹³C¹⁶O/D₂ mixture for a period of 15 to 300 s Following steady-state operation of the catalyst for the desired period of time, the feed to the reactor was switched from the $^{13}C^{16}O/D_2$ mixture to a $^{12}C^{16}O/D_2$ mixture of equivalent composition Figure 3 shows a series of infrared spectra taken immediately after the switch in isotopic composition of the feed The position of the CO band is seen to shift to higher frequencies as ¹²C¹⁶O displaces the adsorbed ¹³C¹⁶O The displacement process is very rapid and is over in about 4-5 s A plot of the gas-phase concentration of ¹³CD₄ during isotopic displacement is illustrated in Fig. 4. It is seen that while the rate of ¹³CD₄ formation undergoes a decline upon substitution of ¹²C¹⁶O for ¹³C¹⁶O, the time constant for this process is significantly longer than that for the displacement of adsorbed CO and, in fact, measurable rates of ¹³CD₄ formation could be observed for up to 600 s following the substitution of CO isotopes. This indicates that a reservoir of ¹³C remains on the

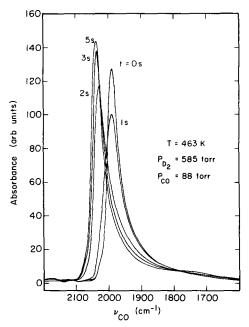


Fig 3 Infrared spectra of adsorbed CO illustrating the displacement of ¹³C¹⁶O by ¹²C¹⁸O under steady-state reaction conditions

surface long after all of the adsorbed ¹³C¹⁶O has been displaced. The amount of ¹³C removed from the catalyst as ¹³CD₄ during this period will be referred to as reactive carbon, C_r.

After a fixed period of exposure of the catalyst to the $D_2/^{12}C^{16}O$ mixture, the reactor was flushed with helium for 0–120 s D_2 was then introduced to react off all residual carbon-containing species Figure 4 shows that upon introduction of D_2 , a rapid rise occurs in the formation $^{13}CD_4$ which

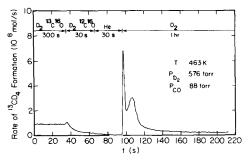


FIG 4 The rate of $^{13}\text{CD}_4$ formation during the sequence $D_2/^{13}\text{C}^{16}\text{O}$ (300 s) $\rightarrow D_2/^{12}\text{C}^{16}\text{O}$ (30 s) \rightarrow He (30s) $\rightarrow D_2$ (3600 s) Total flow rate = 1 42 STP cm³/s

 $[^]b$ Values of \bar{A}_{CO} obtained at saturation coverage with two catalyst samples

reaches a maximum after about 2 s. This sharp peak is then followed by a broader peak occurring between 10 and 60 s The two peaks are attributed to different forms of carbon designated as C_{α} and C_{β} The amount of Ca is defined by the carbon removed during the first 5 s of titration by D_2 , and the amount of C_{β} as the amount of carbon removed after 5 s of titration The absence of significant quantities of deuterium in association with either C_{α} or C_{β} is suggested by H₂/D₂ tracer experiments conducted with Ru-black Additional support for this conclusion can be drawn from recent solid-state ¹³C NMR studies (26), which show no evidence for C-H or C-D coupling on the spectra of C_{α} and C_{β} present on Ru/S1O2

Due to complications arising from overlapping cracking patterns, the transients in ¹²CD₄ were not observed during the course of the experiment presented in Fig 4 These data were obtained, though, by reversing the sequence of introduction of the $^{13}C^{16}O/D_2$ and $^{12}C^{16}O/D_2$ mixtures, and observing the transients in ¹³CD₄ The results are presented in Fig 5 In this case, there is no production of ¹³CD₄ during the first phase of the experiment while 12C16O and D₂ are being fed to the reactor Upon introduction of the ¹³C¹⁶O/D₂ mixture, ¹³CD₄ begins to form and the rate of production of this product steadily increases Comparison of Figs 4 and 5 shows that the methane transients for this part of the experiment

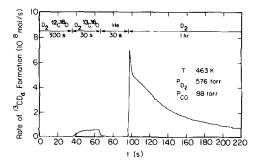


FIG 5 The rate of $^{13}\text{CD}_4$ formation during the sequence $D_2/^{12}\text{C}^{16}\text{O}$ (300 s) $\rightarrow D_2/^{13}\text{C}^{16}\text{O}$ (30 s) \rightarrow He (30 s) $\rightarrow D_2$ (3600 s) Total flow rate = 1 42 STP cm³/s

have a complementary relationship The methane transient observed during the final phase of the experiment shown in Fig 5 is quite different from that shown in Fig 4 The sharp peak seen at the beginning of the response is due to the reduction of a small amount of 13 C-labeled C_{α} , produced during the period following the introduction of the 13 C 16 O/D₂ mixture The broader transient comprising the bulk of the response is due to the reduction of adsorbed CO Infrared spectra taken as a function of time show that the decrease in the absorbance of the 13 C 16 O band exactly parallels the production of 13 CD₄

To ascertain whether the α and β forms of carbon are associated with any oxygen, an experiment similar to that shown in Fig 4 was performed using a $^{12}C^{18}O/D_2$ in the first step of the sequence. If either C_{α} or C_{β} was bonded to oxygen, then it would be expected that a transient in $D_2^{18}O$ would be observed during the reaction of the catalyst with D_2 . Since such transients were not observed, it is concluded that neither C_{α} or C_{β} is associated with oxygen

A series of experiments was conducted in which the steady-state reaction time was varied from 15 to 300 s, to determine the influence of reaction time on the surface concentration of C_{α} and C_{β} In each of these experiments, the duration of CO isotopic exchange was kept constant at 30 s and the duration of the helium flush was held to 15 s. It was observed that the rate of methane synthesis slowly declined from 2 9 \times 10⁻³ to 2 6 \times 10⁻³ s⁻¹ as the reaction time increased from 15 to 300 s. Over the same period of time, the integrated absorbance of the CO band remained constant to within ±1% Figure 6 shows the transients in ¹³CD₄ observed during the reduction of elemental carbon present on the catalyst surface The amounts of C_{α} and C_{β} , determined by integration of the peaks presented in Fig 6, are shown in Fig 7, as functions of the steady-state reaction time. Also shown in this figure is the amount of reactive carbon removed during the 30 s follow-

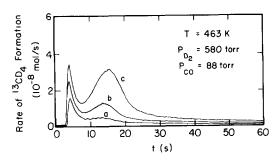


FIG 6 Effect of the length of time under reaction conditions on the transient in $^{13}\text{CD}_4$ formation observed during reduction of the catalyst with D_2 . The gas introduction sequence is the same as that used for the experiment shown in Fig. 4. Duration of reaction in $D_2/^{13}\text{C}^{16}\text{O}$ (a) 10 s, (b) 60 s, (c) 300 s. Duration of exposure to $D_2/^{12}\text{C}^{16}\text{O}$ 30 s. Duration of He flush 15 s. Total flow rate 1.42 STP cm³/s

ing the substitution of $^{12}C^{16}O$ for $^{13}C^{16}O$. The amounts of C_r and C_α increase rapidly during the first 60 s of steady-state reaction and then remain fairly constant thereafter. The close parallel in the temporal behavior of C_r and C_α strongly suggests that these are equivalent forms of carbon. The plateau in the total amount of C_r plus C_α corresponds to 0.02 of a Ru monolayer. The amount of C_β increases monotonically with steady-state reaction time and reaches a level corresponding to 0.13 of a Ru monolayer after 300 s of reaction.

A separate series of experiments was car-

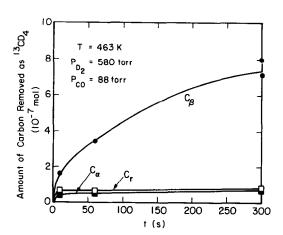


Fig. 7 Effect of the length of time under reaction conditions on the amount of C_{α} , C_{β} , and C_{r}

ried out to determine the influence of the rates at which C_{α} and C_{β} are removed from the catalyst surface during the period of exposure to ¹²C¹⁶O For these experiments, the reaction time was held constant at 300 s while the duration of exposure to ¹²C¹⁶O was varied from 15 to 600 s. A helium flush time of 15 s was used in all cases. The transient responses for ¹³CD₄ are shown in Fig 8, and plots of the amounts of C_{α} , C_{Γ} , and C_β versus ¹²C¹⁶O exposure time are shown in Fig 9 It is apparent from both figures that as the exposure time to ¹²C¹⁶O increases, the reservoir of C_{α} decreases much more rapidly than the reservoir of C_B The integral of the ¹³CD₄ produced during exchange with ¹²C¹⁶O corresponds to the amount of carbon removed from the surface as C_r Figure 9 shows that this amount increases with time of exposure to ¹²C¹⁶O. but that the sum of the amounts of C_{α} , C_{β} , and C_r remains the same It is also interesting to note that for very short ¹²C¹⁶O exposure times (<30 s), $d\theta_{C_r}/dt \approx -d\theta_{C_n}/dt$, whereas for long 12C16O exposure times $(>500 \text{ s}) d\theta_{\text{Cr}}/dt \approx -d\theta_{\text{Cg}}/dt$

The fact that C_{α} is more reactive than C_{β} , and the fact that the reservoir of C_{α} rapidly comes to a steady-state value with reaction time, strongly suggests that C_{α} is a primary intermediate in the formation of methane under steady-state conditions. If this hypoth-

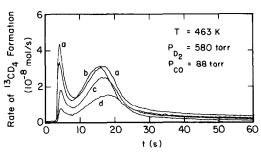


FIG 8 Effect of the duration of exposure to $D_2/^{12}C^{16}O$ on the transient in $^{13}CD_4$ formation observed during the reduction of the catalyst with D_2 . The gas introduction sequence is the same as that used for the experiment shown in Fig. 4. Duration of reaction in $D_2/^{13}C^{16}O$ 300 s. Duration of exposure to $D_2/^{12}C^{16}O$ (a) 15 s, (b) 30 s, (c) 120 s, (d) 600 s. Duration of He flush 15 s. Total flow rate 1.42 STP cm³/s

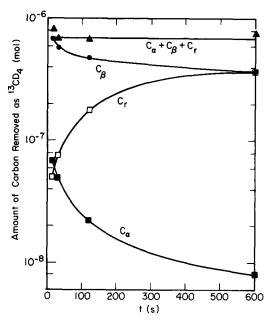


FIG 9 Effect of the duration of exposure to $D_2/I^2C^{16}O$ on the content of ^{13}C in the reservoirs of C_α , C_β , and C_r The results shown here are based on the data presented in Fig 8

esis is correct, then the rate of methanation should be proportional to the amount of C_{α} on the catalyst surface Figure 10 illustrates a plot of the rate of $^{13}\mathrm{CD_4}$ formation versus the amount of $^{13}C_{\alpha}$. The four filled points were obtained from data taken during the period following the substitution of $^{13}\mathrm{C^{16}O}$ by $^{12}\mathrm{C^{16}O}$. It is apparent that these points lie along a straight line which passes through the origin of the plot

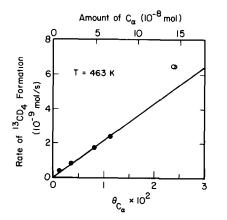


FIG 10 Dependence of the rate of $^{13}CD_4$ formation on $\theta_{C_{\alpha}}$

If Fig 10 properly describes the relationship between the methanation rate and the reservoir of C_{α} , the value of the abscissa for the point corresponding to the steady-state methanation rate (following 300 s of reaction) should correspond to the total amount of C_{α} present on the surface under steady-state conditions. The amount of C_{α} determined in this manner is 1.85×10^{-7} mol. This figure compares favorably with 1.47×10^{-7} mol, the estimate of C_{α} present under steady-state conditions, obtained from Fig. 4

The relationship of C_{α} and C_{β} to one another was investigated through a separate set of experiments In the first, the catalyst was exposed initially to a flow of helium containing 87 Torr of ¹³C¹⁶O, for 300 s at 463 K The ¹³C¹⁶O was then replaced by ¹²C¹⁶O, to displace the adsorbed ¹³C¹⁶O Following a 15-s flush in helium, the residual ¹³C was removed by reaction with D₂ Figure 11 shows that only a single peak of ¹³CD₄ was observed in this experiment. The position, magnitude, and shape of the peak corresponded very closely to those for the C_{α} peak seen normally This result strongly suggests that in the absence of D₂, CO dissociates to produce C_{α} alone

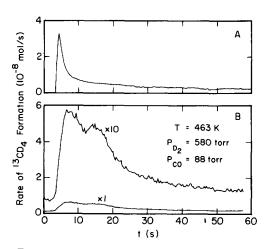


FIG 11 Transients in ¹³CD₄ formation observed during reduction of the catalyst in D₂ The gas introduction sequence for these experiments is (A) ¹³C¹⁶O (300 s) \rightarrow He (15 s) \rightarrow D₂ (3600 s), (b) ¹³C¹⁶O (300 s) \rightarrow D₂/¹²C¹⁶O \rightarrow D₂ (3600 s)

In a second experiment, the catalyst, was again exposed for 300 s to a gas mixture containing $^{13}C^{16}O$ This time, though, the isotopic displacement of adsorbed CO was carried out using a mixture containing $^{12}C^{16}O$ and D_2 As can be seen in Fig 11, subsequent titration of the surface with D_2 produced a transient response for $^{13}CD_4$, which had two peaks The second of these was similar in position and shape to the peak normally observed for C_β This experiment suggests that C_α can readily be converted into C_β but that this process requires the presence of D_2

The conversion of C_{α} into C_{β} can be reversed, as demonstrated by the results presented in Fig 12. In this instance a normal gas delivery sequence was used, with the exception that the period of helium flushing was increased from 15 to 120 s. The data show that, as the duration of helium flushing increases, the C_{β} peak decreases and the C_{α} peak increases

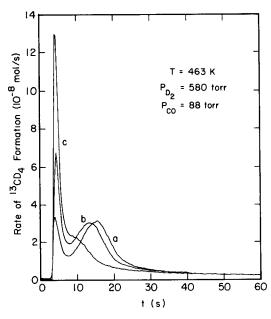


Fig 12 Effect of the duration of He flushing on the transient in $^{13}\text{CD}_4$ formation during the reduction of the catalyst with D_2 The gas introduction sequence is the same as that used for the experiment shown in Fig 4 Duration of reaction in $D_2/^{13}\text{C}^{16}\text{O}$ 300 s Duration of exposure to $D_2/^{12}\text{C}^{16}\text{O}$ 30 s Duration of He flush (a) 15 s, (b) 30 s, (c) 120 s Total flow rate 1 42 STP cm³/s

The influence of reaction conditions on the coverages of the catalyst by C_{α} and C_{β} were investigated by varying the temperature and the partial pressures of $^{13}C^{16}O$ and D_2 during the period of steady-state reaction At 463 K, and for $^{13}C^{16}O$ and D_2 partial pressures between 59 and 195 Torr and 177 and 580 Torr, respectively, the coverages by C_{α} and C_{β} are correlated by the following expressions

$$\theta_{\rm C_{\alpha}} = 4.4 \times 10^{-3} (P_{\rm D_2}/P_{\rm CO})^{0.83}$$
 (2)

$$\theta_{\rm C_B} = 1 \ 3 \ P_{\rm D_2}^{0.14} \ P_{\rm CO}^{0.77} \tag{3}$$

where $P_{\rm D_2}$ and $P_{\rm CO}$ are in atmospheres. It is to be noted that while the coverage by C_{α} depends only on the $D_2/{\rm CO}$ ratio, the coverage by C_{β} increases with the partial pressures of both reactants

The effects of temperature on the coverages by C_{α} and C_{β} are illustrated in Figs 13 and 14 Figure 13 shows that as the temperature increases from 443 to 513 K, the peak attributed to the reduction of C_{β} rapidly shifts to earlier times and merges with the peak for the reduction of C_{α} Above 473 K, resolution of the transient into two separate peaks is no longer possible. The change in the position of the two peaks with temperature indicates that the process leading to

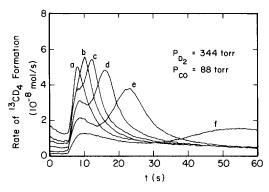


FIG 13 Effect of temperature on the transient in $^{13}\text{CD}_4$ formation observed during the reduction of the catalyst with D_2 The gas introduction sequence is the same as that used for the experiment shown in Fig 4 Temperature (a) 513 K, (b) 493 K, (c) 483 K, (d) 473 K, (e) 463 K, (f) 443 K Duration of reaction in $D_2/^{13}\text{C}^{16}\text{O}$ 300 s Duration of He flush 15 s Total flow rate 1 42 STP cm³/s

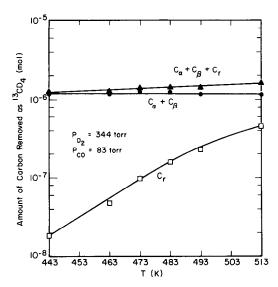


FIG 14 Effect of temperature on the amounts of C_{α} , C_{β} , and C_{r}

the removal of C_{β} are significantly more sensitive to temperature than the processes involved in the removal of C_{α} . The effect of temperature on the total amount of C_{α} and C_{β} removed from the surface after 5 min of reduction is shown in Fig. 14. Also shown is the amount of C_{r} removed during the 30 s that the catalyst is exposed to $^{12}C^{16}O$

It is apparent that the amount of carbon removed as C_r increases rapidly with temperature, but that the total amount of C_α plus C_β , residual on the catalyst surface prior to reduction by D_2 is nearly independent of temperature. These data indicate that the total amount of carbon accumulated on the catalyst surface after 300 s of steady-state operation increases only moderately with temperature. A possible reason for the insensitivity of the carbon coverage to temperature may be that the overall activation energies associated with the rates of production and consumption of carbon are comparable

Formation of C₂ Products

The principal hydrocarbons observed in addition to methane were ethylene and ethane While it was not possible to judge the ratio of olefin to paraffin accurately from

the mass spectrometric data, studies of the synthesis kinetics over silica- and aluminasupported Ru catalysts performed by Kellner and Bell (14) indicate that the ratio should be 4 4 for the conditions used for the major part of this study ($T=463~\rm K$, $P_{\rm D2}=585~\rm Torr$, $P_{\rm CO}=88~\rm Torr$) For these same conditions, the rate of formation of C₂ products is roughly 10% of the rate of methane formation

Isotopic tracer experiments similar to those illustrated in Fig 3 were carried out in order to define the extent of participation of C_{α} and C_{β} in the formation of C_2 hydrocarbons Figure 15 show the mass spectrometer traces observed for masses 34 and 33 The first of these signals corresponds to the most intense peak present in the mass spectra of ¹³C₂D₄ and ¹³C₂D₆, and the second, to the most intense peaks seen in the mass spectra of ¹³CD₂¹²CD₂ and ¹³CD₃¹²CD₃ When the ¹³C¹⁶O/D₂ mixture is fed to the reactor, the intensity of the mass 34 signal is high and intensity of the mass 33 is almost zero. The small amount of mixedlabeled C₂ products formed is due to the presence of 3 6% of ¹²C¹⁶O as an impurity in the ¹³C¹⁶O Upon introduction of the ¹²C¹⁶O/ D₂ mixture, the intensity of the mass 34 signal at first decreases due to the consumption ¹³C carbon present on the catalyst surface The intensity of this signal passes through a minimum at about 10 s and then begins to increase as more and more ¹²C₂D₆

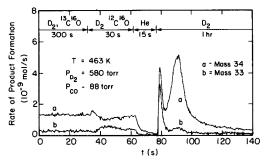


Fig 15 Transients observed in the responses for mass 34 (a) and mass 33 (b) The gas introduction sequence and duration of exposure to each gas are the same as those used for the experiment shown in Fig 4

is formed. The mass 33 signal follows a pattern which is the inverse of the mass 34 signal. Since the only contribution to mass 33 is from the mixed-labeled C₂ products, the dynamics of the mass 33 signal provide a good indication of the rapidity with which ¹²C carbon is formed and incorporated into the C₂ products. Careful inspection of Figs 4 and 15 shows that the latter process is very rapid, since the rate of increase of the mass 33 signal, during the period of exposure to the ¹²C¹⁶O/D₂ mixture, is virtually the same as the rate of increase in the signal for the formation of methane from the newly introduced isotope

The transients observed in the mass 34 and 33 signals during the reduction of the adsorbed ¹³C carbon show two distinct peaks The positions of these peaks are identical to the positions of the methane peaks seen in Fig. 3, for the reduction of C_{α} and C_{β} The only difference in the mass 34 and 33 signals is in the relative intensities of the C_{α} and C_{β} peaks Whereas the C_{β} peak is quite pronounced for mass 34, it is considerably smaller for mass 33 This latter observation is consistent with the fact that the conversion of C_{α} to C_{β} is a relatively slow process, and hence that during the 30 s of exposure of the catalyst to the ¹²C¹⁶O/D₂ mixture, little of the 12 C in the C_{α} reservoir is transferred to the C_{β} reservoir

DISCUSSION

The results presented in this paper clearly demonstrate the existence of two forms of carbon on the surface of Ru C_{α} is produced via the dissociation of adsorbed CO, and as demonstrated by the data presented in Fig 11A, this process does not require the involvement of adsorbed deuterium. Under normal reaction conditions, the surface concentration of C_{α} rapidly achieves a steady-state level and it is observed that the rate of methane synthesis is directly proportional to the surface concentration of C_{α} . The data presented in Fig 11B strongly suggest that C_{β} is formed from

 C_{α} , and that this process requires the participation of adsorbed deuterium. As shown in Fig. 12, the conversion of C_{α} to C_{β} appears to be reversible. While not demonstrated by direct experimental evidence, it seems reasonable to suspect that the conversion C_{β} to C_{α} also involves the participation of adsorbed hydrogen

The coexistence of two forms of carbon on the catalyst surface is consistent with the proposals recently made by Kobori et al (6), Biloen et al (8), and Otarod et al (11) In each case, the authors have suggested that the form of carbon responsible for the synthesis of methane and C_2^+ hydrocarbons comprises only a small fraction of the total carbon deposit, and that the active form of carbon communicates in a reversible fashion with the reservoir of less active, or inactive, carbon Kobori et al (6) have proposed, in addition, that the less active form of carbon is present in the form of hydrocarbon chains attached to the surface of the metal This conclusion was based on infrared observations (7) of the dynamics of build up and depletion of adsorbed hydrocarbon moieties While the work of Kobori et al (6) and that reported here both concern Ru, the interpretations differ. In the course of this work, no evidence was found for the accumulation of hydrocarbon groups, even though adequate sensitivity was available for the detection of these species by infrared spectroscopy Likewise, ¹³C NMR studies show no indication of hydrogen attached to the deposited carbon (26) This leads to the conclusion that under the conditions of the present experiments, neither the α - or β -forms of carbon are hydrocarbon-like in structure

In the work of Cant and Bell (5), experiments similar to those reported here were performed. The failure of these authors to observe C_{β} is very likely due to their choice of reaction conditions. As indicated by Eq. (3), the coverage by C_{β} is proportional to the product $P_{CO}^{0.8}$ $P_{H_2}^{0.14}$. The partial pressures of CO and H_2 used by Cant and Bell (5) were one-third or less than those used in

the present work This would lead to a much smaller accumulation of C_{β} in the same time of steady-state operation While no distinct peak for C_{β} was observed by Cant and Bell (5) during the removal of surface carbon with H_2 , it is possible that a portion of the tail on the C_{α} peak which they observed may have, in fact, been due to the reaction of a small amount of C_{β}

In contrast to the work of Cant and Bell (5), Ekerdt and Bell (3) observed that the accumulation of carbon following 120 min of synthesis at 464 K over a Ru/SiO₂ catalyst corresponded to several monolayers of Ru Reduction of this reservoir produced not only methane but also ethane and propane The rates at which these products were formed greatly exceeded the steadystate synthesis rates and the production of hydrocarbons continued for over 30 min following the onset hydrocarbon reduction Ekerdt and Bell (3) also observed that while the carbon reservoir exceeded several Ru monolayers, its presence did not interfere at all with the chemisorption of CO This led to the conclusion that the carbon resides either on the silica support or is present in the form of thin filaments attached to only a small fraction of the exposed metal surface When viewed in the light of the present results, it seems reasonable to conclude that the form of carbon undergoing reduction in the experiments of Ekerdt and Bell (3) was C_{β} This form of carbon reacts much more slowly than C_{α} and is present in significantly larger quantities. The analogy between the two studies also suggests that most of the C_{β} observed in this study exists in a form which does not occupy a large fraction of the Ru surface

The relationships between gas-phase CO, adsorbed CO, and the α - and β -forms of surface carbon may be described by the reaction sequence illustrated in Fig. 16. With the exception of the pathway shown for the formation of C_{β} , this sequence is similar to that described in several previous studies (3, 4, 6, 8, 11, 14). The very rapid displacement of adsorbed $^{13}C^{16}O$ by gaseous $^{12}C^{16}O$,

$$co \Longrightarrow co_{s} \xrightarrow{S} c_{\alpha} + o_{s}$$

$$-D_{s} + D_{s} \downarrow D_{2}$$

$$c_{\beta} \xrightarrow{-D_{s}} [CD_{x}] D_{2}O$$

$$\downarrow CD_{4}, C_{n}D_{2n}, C_{n}D_{2n+2}$$

Fig 16 Proposed scheme for the connection of CO_s , C_α , C_β , and CD_τ

observed in Fig 3, suggests that under reaction conditions, gas-phase and adsorbed CO are in equilibrium with each other The absence of any isotopic scrambling between carbon and oxygen when adsorbed ¹²C¹⁸O is displaced by ¹³C¹⁶O suggest that the dissociation of adsorbed CO may be irreversible An alternative explanation is that association does occur but that the surface mobility of C and O atoms is insufficient to achieve homogeneous mixing of these species (5) The conversion of C_{α} to methane is shown to proceed through a partially deuterated species designated as CD_r. This symbol is used to represent what is probably a mixture of methyne, methylene, and methyl groups (27, 28) Since the degree of coordination of these species to the surface, is expected to be less than that for free carbon atoms, they should be more mobile Several authors (4, 14, 27, 28) have suggested that the formation of higher molecular hydrocarbons is initiated by migration of a methyl group to a methylene group to form an ethyl group The rapid appearance of D₃¹²C¹³CD₃ when ¹²C¹⁶O is substituted for ¹³C¹⁶O, shown in Fig 15, is consistent with the postulated mobility of CD_r species If upon coupling the C₂D₅ species were to lose deuterium, it would be easy to see how a carbon dimer might be formed Similar processes can be envisioned to explain the formation of higher oligomers of carbon It is also possible to see how, under appropriate circumstances, such precursors might lead to the formation of graphitic carbon (29)

The location of the C_{β} relative to the Ru microcrystallites is difficult to establish unambiguously If it is assumed that C_{β} accumulates on the surface of the microcrystallites in a structure that is one-carbon-atom thick, one would anticipate that the corresponding blockage of Ru sites would lead to an attenuation in the coverage by chemisorbed CO and to a decrease in the rate of methane synthesis As was noted earlier, the accumulation of C_{β} to a level equivalent to 0 13 of a Ru monolayer does not cause an observable reduction in the integrated absorbance of CO However, this does not necessarily mean that a reduction in CO coverage has not occurred since, as shown in Fig 2A, the curve of integrated absorbance versus CO coverage is nearly flat at high CO coverages There does appear to be a correlation, though, between the rate of methane synthesis and the accumulation of β -carbon In the interval between 60 and 300 s of reaction, the turnover frequency for methane synthesis decreases by about 18% Over the same period, the coverage by C_{β} increases by about 7% Thus, it seems reasonable to suggest that the accumulation of C_{β} may contribute to the decrease in catalyst activity

The reaction sequence outlined in Fig. 16 is qualitatively consistent with the changes in the surface concentrations of C_{α} and C_{β} observed during the course of an experiment. Upon introduction of the reaction mixture, the catalyst surface is immediately covered by chemisorbed CO, thereby initiating the deposition of C_{α}

In the second stage of an experiment, the $^{13}C^{16}O$ present in the reactor bed is replaced by $^{12}C^{16}O$ Since the change in isotopic composition is made without altering the partial pressures of CO and D_2 , the surface concentrations of adsorbed CO, carbon, and deuterium are unaffected. The rapid displacement of adsorbed $^{13}C^{16}O$ by $^{12}C^{16}O$ means that within the first few seconds following the perturbation in isotopic composition of CO, the source of ^{13}C -labeled C_{α} and C_{β} is eliminated. The subsequent de-

cline in the surface concentrations of $^{13}C_{\alpha}$ and $^{13}C_{\beta}$ is dictated by the kinetics governing the interconversion of these species and the hydrogenation of both forms of carbon to $^{13}CD_4$ The data presented in Figs 9 and 10 show that at the outset, C_{α} reacts much more rapidly than C_{β} , even though the reservoir of C_{α} is about an order of magnitude smaller than that of $^{13}C_{\beta}$ This indicates that the rate coefficient for conversion of C_{α} to CD_{τ} is significantly larger than that for C_{β} With increasing time, the inventory of C_{α} decreases to the point where C_{α} is no longer the dominant source of $^{13}CD_4$ and now C_{β} becomes the principal source of this product

The final phase of an experiment involves the removal of all residual carbon-containing species with D₂ Figure 5 shows that during this phase, the surface concentration of adsorbed CO gradually decreases. It is reasonable to postulate that the Ru sites vacated by this means are rapidly covered by adsorbed D₂, and hence that the surface concentration of D₂ increases at a rate comparable to the rate at which adsorbed CO is consumed The reaction sequence presented in Fig 16 indicates that under such circumstances the rate of CD₄ formation will go through a maximum as each of the forms of adsorbed carbon is consumed Since C_{α} is more reactive than C_{β} , the peak in CD₄ formation associated with the consumption of C_{α} will occur earlier than that associated with the consumption of C_{β} The shift in the position of the peak for C_{β} to earlier times with increasing reaction temperature, observed in Fig. 13, can be attributed to the fact that the global activation energy for converting C_{β} to CD_4 is higher than that for C_{α}

CONCLUSIONS

Transient response, isotopic tracer experiments have revealed that two distinctly different forms of carbon are deposited on the surface of a Ru/SiO₂ catalyst during CO hydrogenation The first of these, designated C_{α} , rapidly achieves a steady-state

coverage This form of carbon is highly reactive and is the principal precursor to methane and C₂⁺ hydrocarbons The rate of methanation is directly proportional to the surface coverage by C_{α} The second form of carbon, designated C_{β} , accumulates progressively with time, and after a few minutes under reaction conditions, the quantity of C_{β} on the catalyst exceeds by many fold the quantity of C_{α} The location of C_{β} is not fully established It appears that only a part of the total C_{β} deposit resides on the surface of Ru and that the balance is on the support There is also evidence that the portion on the metal surface may be responsible for the progressive loss of methanation activity with time

The formation of C_{α} occurs via the dissociation of adsorbed CO, and takes place without the participation of hydrogen C_{β} , on the other hand, is formed from C_{α} , and the conversion of C_{α} to C_{β} requires the presence of hydrogen on the catalyst surface Quite surprisingly, it is found that C_{β} can be converted back to C_{α} Based on these observations, it is concluded that under reaction conditions C_{β} acts as a reservoir of carbon that can resupply the inventory of C_{α}

In situ infrared spectra of the catalyst indicate that for the range of reaction conditions considered here, the surface of Ru is virtually saturated by linearly adsorbed CO Less than monolayer coverages of CO could be obtained by a partial reduction adsorbed CO Correlation of the integrated band intensity with the coverage by adsorbed CO has shown that the integrated absorption coefficient, $\bar{A}_{\rm CO}$, is not constant but instead decreases progressively with increasing coverage

ACKNOWLEDGMENTS

This work was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, U S Department of Energy under Contract DE-AC03-76SF00098

REFERENCES

I Matsumoto, H, and Bennett, C O, J Catal 53, 331 (1978)

- 2 Reymond, J P, Mériaudau, P, Pommier, B, and Bennett, C O, J Catal 64, 163 (1980)
- 3 Ekerdt, J G and Bell, A T, J Catal 58, 170 (1979)
- 4 Biloen, P, Helle, J N, and Sachtler, W M H, J Catal 58, 95 (1979)
- 5 Cant, N W, and Bell, A T, J Catal 73, 257 (1982)
- 6 Kobori, Y., Yamasaki, H., Naito, S., Onishi, T., and Tamaru, K., J. Chem. Soc. Trans. 1 78, 1473 (1982)
- 7 Yamasaki, H, Kobori, Y, Naito, S, Onishi, T, and Tamaru, K, J Chem Soc Trans 1 77, 2913 (1981)
- 8 Biloen, P, Helle, J N, van den Berg, F G A, and Sachtler, W M H, J Catal 81, 450 (1983)
- 9 Happel, J, Suzuki, I, Kokayeff, P, and Fthenakis, V, J Catal 65, 59 (1980)
- 10 Happel, J, Cheh, H, Otarod, M, Ozawa, S, Severidia, A J, Yoshida, T, and Fthenakis, V, J Catal 75, 314 (1982)
- 11 Otarod, M, Ozawa, S, Yiu, F, Chew, M, Cheh, H, Y, and Happel, J, J Catal 71, 216 (1981)
- 12 Hicks, R F, Kellner, C S, Savatsky, B J, Hecker, W C, and Bell, A T, J Catal 71, 216 (1981)
- 13 Savatsky, B J, and Bell, A T, ACS Symp Ser 178, 105 (1982)
- 14 Kellner, C S, and Bell, A T, J Catal 70, 418 (1981)
- 15 Kellner, C S, and Bell, A T, J Catal 71, 288 (1981)
- 16 Vannice, M A, J Catal 58, 170 (1979)
- 17 Dalla Betta, R A, Piken, A G, and Shelef, M, J Catal 35, 54 (1974)
- 18 Hammaker, R M, Francis, S A, and Eischens, R P, Spectrochim Acta 21, 1295 (1965)
- 19 Heyne, H, and Tompkins, F C, Trans Farad Soc 63, 1274 (1967)
- 20 Eischens, R P, Acc Chem Res 5, 74 (1972)
- 21 Seanor, D A, and Amberg, C H, J Chem Phys 42, 2967 (1965)
- 22 Cant, N W, and Donaldson, R A, J Catal 78, 461 (1982)
- 23 Pfnur, H, Menzel, D, Hoffman, F M, Ortega, A, and Bradshaw, A M, Surf Sci 93, 431 (1980)
- 24 Crossley, A, and King, D A, Surf Sci 68, 528 (1977)
- 25 Crossley, A, and King, D A, Surf Sci 95, 131 (1980)
- 26 Duncan, T M, Winslow, P, and Bell, A T, Phys Chem Lett, in press
- 27 Bell, A T, Catal Rev Sci Eng 23, 203 (1981)
- 28 Biloen, P, and Sachtler, W M H, "Advances in Catalysis," Vol 30, p 165 Academic Press, New York, 1981
- 29 Goodman, D W, Kelley, R D, Madey, T E, and White, J M, J Catal 64, 479 (1980)